1. Home
  2. Studien
  3. Machine-Learning-Verfahren: Identifikation von empirischen Unternehmenscharakteristika
Manuel Fritsch / Dr. Henry Goecke / Andreas Kulpa IW-Report Nr. 35 24. September 2018 Machine-Learning-Verfahren: Identifikation von empirischen Unternehmenscharakteristika

Dieser Projektabschlussbericht fasst die Ergebnisse des gemeinsamen Projektes der DATAlovers AG, dem Institut der deutschen Wirtschaft und der IW Consult zusammen. Das Konsortium hat sich zusammengeschlossen um zu evaluieren, inwieweit Machine Learning Ansätze in Kombination mit den Inhalten von Unternehmensinternetseiten als primäre Informationsquelle für die wissenschaftliche Forschung angewendet werden können.

PDF herunterladen
Identifikation von empirischen Unternehmenscharakteristika
Manuel Fritsch / Dr. Henry Goecke / Andreas Kulpa IW-Report Nr. 35 24. September 2018

Machine-Learning-Verfahren: Identifikation von empirischen Unternehmenscharakteristika

IW Report

PDF herunterladen

Teilen Sie diesen Artikel:

oder kopieren Sie den folgenden Link:

Der Link wurde zu Ihrer Zwischenablage hinzugefügt!

Dieser Projektabschlussbericht fasst die Ergebnisse des gemeinsamen Projektes der DATAlovers AG, dem Institut der deutschen Wirtschaft und der IW Consult zusammen. Das Konsortium hat sich zusammengeschlossen um zu evaluieren, inwieweit Machine Learning Ansätze in Kombination mit den Inhalten von Unternehmensinternetseiten als primäre Informationsquelle für die wissenschaftliche Forschung angewendet werden können.

Die grundlegende Aufgabenstellung des Projektes besteht darin zu klären, ob die Kombination aus den neuen Methoden des maschinellen Lernens und den Texten von Internetseiten bei der Identifikation von unternehmerischen Zwillingen wissenschaftlichen Ansprüchen genügt. Hierbei sollen validierte Informationen zu einer vergleichsweise kleinen Zahl an Unternehmen auf die Gesamtheit der Unternehmen übertragen werden. Bei einem Erfolg des Ansatzes würde dies bedeuten, dass mit einer kostengünstigen Methode Ergebnisse für alle deutschen Unternehmen gewonnen werden können. Durch diese „quasi-Vollerhebung“ würden sich viele weitere Anwendungsmöglichkeiten für ein Forschungsinstitut eröffnen.

Die Aufgabenteilung in diesem Projekt gestaltet sich wie folgt: Das Institut der deutschen Wirtschaft und die IW Consult liefern die originären Informationen der Unternehmen und übernehmen die Quantifizierung der Ergebnisse. DATAlovers bringt als originäre Daten die Texte der Internetseiten aller deutschen Unternehmen mit ein, trainiert mit der gesamten Datenmenge einen Algorithmus und bestimmt die Prognosen des Algorithmus.

Allgemein stellt die beschriebene Aufgabe ein Klassifizierungsproblem dar: Mit Hilfe einer großen Datenmenge soll für jedes deutsche Unternehmen entschieden werden, ob es zu einer spezifischen Gruppe gehört oder nicht. Für derartige Fragestellungen bietet sich die Verwendung von Machine Learning Methoden an. Da die Zielgrößen (die jeweiligen Gruppen) bekannt sind, ist die Klasse des überwachten maschinellen Lernens (im Gegensatz zum unüberwachten maschinellen Lernen) anzuwenden. Hierzu gehören beispielsweise die Methoden Logistic Regression, Random Forest, Support Vector Machine oder Decision Tree (vgl. ausführlicher dazu Brownlee, 2016; Provost/Fawcett, 2013).

Diese Ansätze werden vermehrt in der aktuellen Forschung und in der Statistik eingesetzt. Beispielsweise werden die Methoden von Feuerhake/Dumpert (2016) bei der Klassifizierung von Unternehmen in die deutsche Handwerksstatistik verwendet. Dumpert et al. (2016) verwenden diese Ansätze, um Unternehmen in den sogenannten Dritten Unternehmenssektor einzusortieren, bei Finke et al. (2017) erfolgt eine Zuordnung der Müttereigenschaft bei Frauen und Dumpert/Beck (2017) verwenden diese Methoden zur Klassifikation der Staatsangehörigkeit bei Personen. Des Weiteren werden aktuell Machine Learning Algorithmen verwendet, um Datensätze miteinander zu verknüpfen (z. B. Schild et. al., 2017). Damit lässt sich dieses Projekt, von der Methode her, den aktuellen Ansätzen in der amtlichen Statistik zuordnen.

PDF herunterladen
Identifikation von empirischen Unternehmenscharakteristika
Manuel Fritsch / Dr. Henry Goecke / Andreas Kulpa IW-Report Nr. 35 24. September 2018

Manuel Fritsch / Dr. Henry Goecke / Andreas Kulpa: Identifikation von empirischen Unternehmenscharakteristika mittels Machine Learning Verfahren

IW Report

PDF herunterladen

Teilen Sie diesen Artikel:

oder kopieren Sie den folgenden Link:

Der Link wurde zu Ihrer Zwischenablage hinzugefügt!

Mehr zum Thema

Artikel lesen
Digitale Kompetenzen werden intensiv vermittelt
Susanne Seyda / Robert Köppen / Paula Risius IW-Kurzbericht Nr. 93 16. Dezember 2021

Betriebliche Weiterbildung: Digitale Kompetenzen werden intensiv vermittelt

Digitale Kenntnisse und Fähigkeiten werden immer wichtiger. Viele Unternehmen vermitteln diese Kompetenzen daher nicht nur in der Ausbildung, sondern auch in der betrieblichen Weiterbildung und leisten damit einen wichtigen Beitrag, um die Mitarbeitenden mit ...

IW

Artikel lesen
Vera Demary / Henry Goecke in GTIPA Perspectives Externe Veröffentlichung 2. Dezember 2021

COVID-19 Impacts on Adoption of Artificial Intelligence

Hospitals have always been at the center of pandemics and other health crises. This was particularly the case during the COVID-19 pandemic. Policymakers relied on the healthcare system to provide them with the indicators they needed to implement safety ...

IW

Mehr zum Thema

Inhaltselement mit der ID 8880